研究领域或方向:
燃料电池结构为基础的二氧化碳还原研究;
氢离子浓差电池发电及热电转换研究;
锂离子电池正极材料设计开发及应用;
燃料电池阴极催化剂的制备及催化机理研究;
工作经历:
2022.10-至今 我校 yh86银河国际 副教授
2019.7-2022.9 我校 yh86银河国际 助理教授
2015.9-2019.6 我校 博士研究生
2018.9-2019.4 美国罗格斯大学(NB) 访问学者
2010.9-2015.9 中航工业北京航空材料研究院 工程师
科研项目:
国家自然科学基金(青年, 52202046): CO2/H2燃料电池中碳载体未成对电子协同RuO2氧空位催化CO2还原机理研究,在研,主持;
陕西省自然科学基金(青年,2021JQ-034):氢离子浓差热电池Ru基高效阴极催化剂的构筑及其析氢动力学研究,在研,主持;
微纳米材料工程与技术重庆市高校重点实验室开放课题:TiO2-x@Ru核壳催化剂在新型热电转化装置—氢离子浓差热电池中的析氢动力学研究,在研,主持;
陕西省高校联合项目-重点项目 (2021GXLH-Z-067):氢离子浓差热电池,在研,主要参研人。
学术成果:
[1] Yan Liu, Tao Zhang, Chao Deng, Shixiu Cao, Xin Dai, Shengwu Guo, Yuanzhen Chen, Qiang Tan, Haiyan Zhu†, Sheng Zhang†, Yongning Liu†. Ordered mesoporous carbon spheres assisted Ru nanoclusters/RuO2 with redistribution of charge density for efficient CO2 methanation in a novel H2/CO2 fuel cell. J. Energy Chem., 2022, 72, 116–124.
[2] Kunyang Zou, Weitao Jing, Xin Dai, Xinxing Chen, Ming Shi, Zhiyin Yao, Ting Zhu, Junjie Sun, Yuanzhen Chen, Yan Liu†, and Yongning Liu†. A highly efficient sulfur host enabled by nitrogen/oxygen dual-doped honeycomb-like carbon for advanced lithium-sulfur batteries. Small, 2022, 18, 2107380.
[3] Yan Liu, Kunyang Zou, Tao Zhang, Xin Dai, Shixiu Cao, Qiang Tan, Yuanzhen Chen, Shengwu Guo, Yongning Liu†, Novel honeycomb-like carbons with tunable nanopores as metal-free N, O-codoped catalysts for robust oxygen reduction. Chem. Eng. J., 2022, 433, 133560.
[4] Yan Liu, Tao Zhang, Yu E. Duan, Xin Dai, Qiang Tan, Yuanzhen Chen, Yongning Liu†, N,O-Codoped carbon spheres with uniform mesoporous entangled Co3O4 nanoparticles as a highly efficient electrocatalyst for oxygen reduction in Zn-air battery. J. Colloid Interf. Sci. 2021, 604, 746-756.
[5] Liu Y, Zhang T, Dai X, Tan Q, Chen YZ, Liu YN†, and Asefa T†. Ordered Nanoporous Nitrogen- and Oxygen-Codoped Carbon Nanospheres as Electrocatalysts for Oxygen-Reduction Reaction in Direct Methanol Fuel Cells. ACS Appl. Nano Mater. 2020, 3, 5139−5148.
[6] Liu Y*, Li YW*, Chen YZ, Qu T, Shu CY, Yang XD, Zhu HY, Guo SW, Asefa T†, Liu YN†. A CO2/H2 fuel cell: reducing CO2 while generating electricity. J. Mater. Chem. A, 2020, 8, 8329. *These authors contributed equally to this work. (Selected as Hot Paper).
[7] Liu Y, Chen YZ, Ming J, Chen L, Shu CY, Qu T, Tan Q, Liu YN†, Asefa T†. Harvesting Waste Heat Energy by Promoting H+-Ion Concentration Difference with a Fuel Cell Structure. Nano Energy, 2019, 57: 101~107.
[8] Liu Y, Shu CY, Fang Y, Chen YZ, Liu YN†. Two 3D structured Co-Ni bimetallic oxides as cathode catalysts for high-performance alkaline direct methanol fuel cells. Journal of Power Sources, 2017, 361:160-169.
[9] Liu Y, Chen YZ†, Li S, Shu CY, Fang Y, Song B. Improved charge transfer in Mn2O3@Co1.2Ni1.8O4 hybrid for a highly stable alkaline direct methanol fuel cell with good methanol tolerance. ACS Applied Materials & Interfaces, 2018, 10:9485-9494.
[10] Liu Y, Liu YN†, Jinfu Ma, Lai JH. La1−xSrxCoO3 (x = 0.1–0.5) as the cathode catalyst for a direct borohydride fuel cell. Journal of Power Sources, 2010, 195:1854–1858.
[11] Liu Y, Ma J, Lai JH, Liu YN†. Study of LaCoO3 as a cathode catalyst for a membraneless direct borohydride fuel cell. Journal of Alloys and Compounds, 2009, 488:204–207.